We aim to cool (remove mechanical energy from) the motion of a harmonic oscillator, like a mass on a spring, to its quantum mechanical ground state.

Motivation – Testing Quantum Mechanics and Gravity
Once the energy is near the ground state energy, we can:
- Perform Fundamental Tests of QM
- Generate Interesting States

Finally, we aim to help answer the question
- Is gravity quantum mechanical?

How Will we Do This?
To test the quantum mechanical effects of gravity, we intend to create a non-classical state of the harmonic oscillator. For instance:
- A spatial superposition state
- A squeezed state of the harmonic oscillator
- Changes to the evolution of quantum uncertainty

References
1 R Penrose Mathematical Physics 2000
3 H Yang et al. PRL, 110 (2013)

Feedback Cooling the Motion of a Magneto-Gravitationally Trapped Microsphere
Bradley R Slezak, Charles W Lewandowski, Brian D’Urso
Montana State University

Introduction – Cooling a Mechanical Oscillator
We create a harmonic oscillator by diamagnetically levitating a silica microsphere with a magnetic ‘trap’ consisting of permanent magnets sandwiched between ferromagnetic pole pieces:

The shape of the pole pieces generates a quadrupole field (in the x-y plane) that is gently curved upwards in the y-z plane:

Consider the potential energy of a spherical particle in this magnetic field and in the presence of gravity:

This potential creates a trap (a potential minimum and restoring force in all directions):

\[U = \frac{1}{2} k_B T = \frac{1}{2} m \omega_0^2 (x^2) \]

\[\omega_x/2\pi \approx 60.0 \text{ Hz} \quad \omega_y/2\pi \approx 97.0 \text{ Hz} \quad \omega_z/2\pi \approx 7.0 \text{ Hz} \]

Motivation – Testing Quantum Mechanics and Gravity
Once the energy is near the ground state energy, we can:
- Perform Fundamental Tests of QM
- Generate Interesting States

Finally, we aim to help answer the question
- Is gravity quantum mechanical?

How Will we Do This?
To test the quantum mechanical effects of gravity, we intend to create a non-classical state of the harmonic oscillator. For instance:
- A spatial superposition state
- A squeezed state of the harmonic oscillator
- Changes to the evolution of quantum uncertainty

References
1 R Penrose Mathematical Physics 2000
3 H Yang et al. PRL, 110 (2013)

Acknowledgements
This material is based upon work supported by the National Science Foundation under Grant No. 1540879 and the Charles E. Kaufman Foundation under Grant No. KA2016-85221